Inscribed & Circumscribed Angles and Intercepted Arcs | Name | Definition | Measure | Picture | |-----------------|--|---|--------------| | Inscribed Angle | An angle whose vertex is
on a circle and whose
sides contain chords of
the circle | The measure of an inscribed angle is half the measure of its intercepted arc. | c 50. 100. | | Intercepted Arc | An arc whose endpoints lie on the sides of an inscribed angle and all the points of the circle between them. | The measure of an intercepted arc is double the measure of the inscribed angle. | c 30. | **Example:** Find the measure of angle ABD. **Example:** Find the value of x and arc AD and arc ABD. **Example:** Find the measure of arc AB and BC. **Example**: Find the measure of angle JLM. | Name | Theorem | Hypothesis | Conclusion | |-------------------------------|---|------------|------------| | Intercepted Arcs
Corollary | If inscribed angles of a circle intercept the same arc, then the angles are congruent | | ZA = ZB | **Example**: Find the measure of angle B. measure of angle G and arc IF. | Name | Theorem | Hypothesis | Conclusion | |---------------------|---|--|------------| | Circumscribed Angle | Angle formed by two rays that are each tangent to a circle. | The measure of a circumscribed angle is equal to 180 degrees minus the measure of the central angle that forms the intercepted arc. The rays are perpendicular to the radii of the circle. | | **Example:** What is the measure of angle A if angle D is 48 degrees? ## Circumscribed and Inscribed Polygons | Name | Theorem | Hypothesis | Conclusion | |---|--|------------|-----------------------------------| | Inscribed Right Triangle
Diameter Theorem | If a triangle is inscribed in
a circle such that one
side of the triangle is a
diameter of the circle,
then the triangle is a right
triangle. | M D E, | if ME is a diameter then LT=90. | | Converse of Right
Triangle Diameter
Theorem | If a right triangle is
inscribed in a circle, then
the hypotenuse is a
diameter of the circle. | M L T | LT=90.
Len ME is
a diameter | **Example:** Find the measure of arc AED. **Example**: Find the value of x. $$3x = 90$$. $$X = 30$$ | | Name | Theorem | Hypothesis | Conclusion | |---|--------------------|---|------------------------------------|---------------| | | Inscribed Polygons | A polygon whose vertices lie on the circle. | Opposite angles are supplementary. | A B | | _ | | | / K + / D - 1X) | 7A + / C = XD | **Example:** Find the value of x and y.