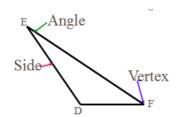
Angle Relationships in Triangles

A triangle is a figure formed when three noncollinear (not on the same line) points are connected by segments.



The sides are: \overrightarrow{EF} , \overrightarrow{DE} , \overrightarrow{FD}

The vertices are: E, F, D

The angles are:

LE, LF, LD

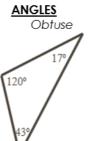
Opposite Side of ∠F: ED

Opposite Side of ∠E: **D**F

Opposite Side of ∠D: EF

Triangles can be classified by two categories: by Angles and by Sides.

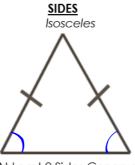
All Acute Angles



One Obtuse Angle

One Right Angle

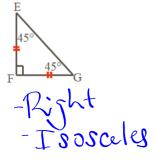
No Sides Congruent



At Least 2 Sides Congruent <u>a</u>angles

Equilateral 700! All angles

Practice: Classify the triangles by sides and angles.



Think About It: Check which triangles are possible.

	<u> </u>		
	Acute	Obtuse	Right
Scalene			
Isosceles			
Equilateral			

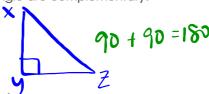
Triangle Sum Theorem

<u>Triangle Sum Theorem</u>: The measures of the three interior angles in a triangle add up to be 180°

This means:

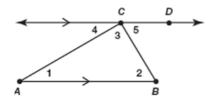
Corollary to Triangle Sum Theorem: The acute angles of a right triangle are complementary.

This means:



Proof of the Triangle Sum Theorem:

Statements



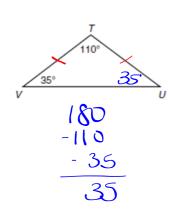
liven: Triangle ABC with AB | CD rove: $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$

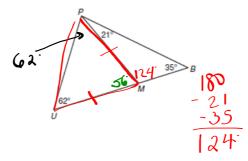
- 2. ∠4 ≅ ∠1
- 4. *m*∠4 ≅ *m*∠1
- 6. $m\angle ACD = m\angle 5 + m\angle 3$
- $7.m\angle 4+m\angle ACD = 180^{\circ}$

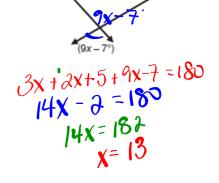
- 1. Given
- 3. Alt. Interior Angles are ≅
- 5. Def. of ≅ Angles
- 7. Linear Pair Postulate
- 8. Substitution Property
- 9. Substitution Property

Examples: Find $m \angle U$.

Find m∠UPM







Exterior Angle Theorem

Exterior Angle Theorem: The measure of the exterior angle is equal to the sum of two remote interior angles.

What does exterior mean? Interpret:

What does remote mean? __

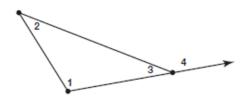
What does interior mean?

awan MONT

Proof: Prove the Exterior Angle Theorem:

Given: $\angle 1$, $\angle 2$, and $\angle 3$ are interior angles.

Prove: $\angle 4 = \angle 1 + \angle 2$



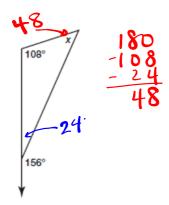
Statements

- 1. \angle 1, \angle 2, and \angle 3 are int. angles.

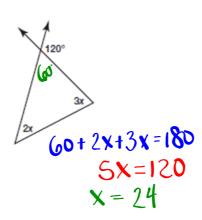
Reasons

- 2. Triangle Sum Theorem
- 3. Definition of a Linear Pair
- 4. Transitive/Substitution
- 5. Subtraction Property

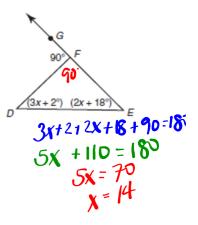
Examples:



В.



C.

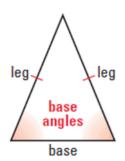


Solve for x using the Extense Theorem:

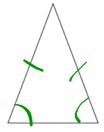
156=108+X

X=48

Isosceles Base Angle Theorem and Its Converse



Isosceles Triangle



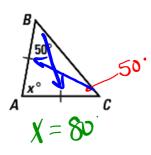
Base Angles Theorem:
If two sides of a triangle are congruent, then the angles opposite them are congruent.

Converse of Base Angles Theorem:

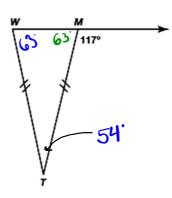
If two angles of a triangle are congruent, then the sides opposite of them are congruent.

Examples:

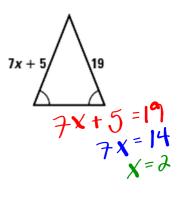
A. Find the value of x



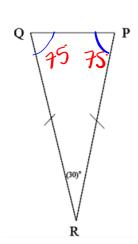
B. Find the $m \angle T$



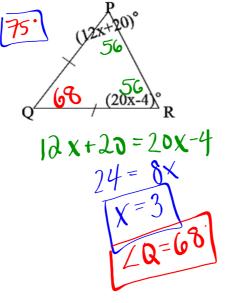
C. Find the value of x.



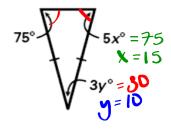
D. Find the measure of <P. \angle R = 30 $^{\circ}$



E. Find the measure of $\angle Q$



F. Find the value of x & y.



Side Inequality Theorem

<u>Side Inequality Theorem:</u> If one side of a triangle is longer than the other side, then the angle opposite the longer side has a greater measure than the angle opposite the shorter side.

This means: The largest angle of a triangle lies opposite the longest side. The smallest angle lies opposite the shortest side. If two angles are equal, their side lengths will be equal.

Example: List the sides from shortest to longest for each diagram.

