

Location of Points and Their Equations

On the Circle

Inside the Circle

Outside the Circle

Determining if a Point is on the Circle

Standard Form of Circles

$$(x - h)^2 + (y - k)^2 = r^2$$

Given a circle, you can verify whether a point lies on the circle by:

*substituting the coordinates of the point into the equation to see if the resulting equation is true

1. A circle has a radius of 2 and a center of (2, -3). Will the following points lie on the circle?

Equation of Circle:

a. (2, -5)

Substitute point into equation to see if resulting equation is true.

$$\frac{(2-2)^2 + (-5+3)^2 - 4}{0^2 + (-2)^2 - 4}$$

$$0 + 4 = 4$$

conclusion: Y = 4 on the circle

Substitute point into equation to see it resulting equation is true.

$$(3-2)^2 + (-1+3)^2 = 4$$

$$(1)^2 + (2)^2 = 4$$

$$(1)^2 + 4 = 4$$
Conclusion:

$$5 > 4 \qquad \text{outside} \qquad \text{for all } \qquad \text{f$$

Flip onto back

$$e \times . \downarrow$$
 $\lambda = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

center is (5, 8) with a point on the circle at (1, 2)

find the radius and determine where the point (3, 2)

is.

 $r = \sqrt{(1-5)^2 + (2-8)^2}$
 $\sqrt{(-4)^2 + (-6)^2}$
 $\sqrt{(-4)^2 + (-6)^2}$

$$(x-h)^{2} + (y-h)^{2} = r^{2}$$

$$(x-5)^{2} + (y-8)^{2} = 52$$

$$(3-5)^{2} + (2-8)^{2} = 52$$

$$(-2)^{2} + (-6)^{2} = 52$$

$$4 + 36 = 52$$

$$40 < 52$$
inside
$$11$$

$$Circle$$