$$\int_{0}^{\infty} \int_{0}^{\infty} dx = m(x - x_{i})$$
2) through:

2) through: (-1, -2), parallel to y = 3x - 2

$$y = 3$$
 $y + 2 = 3(x + 1)$ 
 $y + 2 = 3x + 3$ 
 $y = 3x + 1$ 

3) through: 
$$(1, 3)$$
, perp. to  $y = -\frac{1}{4}x + 2$ 

$$M=\frac{1}{4} \rightarrow M=\frac{4}{4}$$

$$y - 3 = 4(x - 1)$$

$$y - 3 = 4x - 4$$

$$y = 4x - 1$$

$$y = 4x - 1$$

4) through: 
$$(-1, 0)$$
, perp. to  $y = x$ 

$$M = \frac{1}{1}$$
  $\rightarrow$   $M = \frac{1}{1}$ 

$$\int_{0}^{\infty} -0 = -\left(\left(X + 1\right)\right)$$

Find the distance between each pair of points.

5) 
$$(-2, 8)$$
,  $(-7, -8)$ 

$$\sqrt{28}$$

$$\sqrt{28}$$

Find the midpoint of the line segment with the given endpoints.

$$\begin{pmatrix} 1+-5 & 1+0 \\ 2 & 1/2 \end{pmatrix}$$

$$\begin{pmatrix} -2 & 1/2 \\ -2 & 1/2 \end{pmatrix}$$

$$(0.5, -3.5)$$

### **Equations of Circles and Their Graphs**

A video game designer created the following diagram of a target.



What is the radius from the center to point A? (43) (13)



What is the radius from the center to point B? (-12,5) (0,0)



### Deriving the Equation of a Circle



Using the Pythagorean Theorem, prove the radius of the circle is a length of 3 units using the given points.

$$1^{2} + (\sqrt{8})^{2} = 1^{2}$$
 $1 + 8 = 1$ 
 $9 = 1^{2}$ 



An arbitrary point has been placed on a general circle with radius r. Label the right triangle's legs and hypotenuse and write the Pythagorean Theorem equation that models your triangle.

$$x^2 + y^2 = r^2$$



Using the Pythagorean Theorem, prove the radius of the circle is a length of 3 units using the given point.

$$(5-3)^{2} + (2+5-4)^{2} = r^{2}$$

$$2^{2} + (5)^{2} = r^{2}$$

$$4 + 5 = r^{2}$$

$$9 = r^{2}$$



Arbitrary points have been placed on a general circle with radius r. Label the right triangle's legs and hypotenuse and write the Pythagorean Theorem equation that models your triangle.

#### **Equations of Circles**

circle center

is the set of all points (x, y) in a plane that are equidistant from a fixed point called the of the circle. The distance between the center and any point (x, y) on the circle is called

The Standard Form of a Circle
Centered at the Origin:

$$x^2 + y^2 = r^2$$

(0,0) is the center r is the radius

The Standard Form of a Circle Centered Not at the Origin:

$$(x - h)^2 + (y - k)^2 = r^2$$

(h, k) is the center r is the radius

a. 
$$x^2 + y^2 = 16$$



b. 
$$x^2 = 30 - y^2$$
  
 $x^2 + y^2 = 30$ 

a. 
$$x^{2} + y^{2} = 16$$
b.  $x^{2} = 30 - y^{2}$ 

$$x^{2} + y^{2} = 30$$
c.  $(x - 2)^{2} + (y + 1)^{2} = 9$ 

$$x^{2} + y^{3} = 30$$
c.  $(x - 2)^{2} + (y + 1)^{2} = 9$ 
c.  $(x - 2)^{2} + (y + 1)^{2} = 9$ 
c.  $(x - 2)^{2} + (y + 1)^{2} = 9$ 
c.  $(x - 2)^{2} + (y + 1)^{2} = 9$ 
c.  $(x - 2)^{2} + (y + 1)^{2} = 9$ 
c.  $(x - 2)^{2} + (y + 1)^{2} = 9$ 
c.  $(x - 2)^{2} + (y + 1)^{2} = 9$ 
c.  $(x - 2)^{2} + (y + 1)^{2} = 9$ 
c.  $(x - 2)^{2} + (y + 1)^{2} = 9$ 



c. 
$$(x-2)^2 + (y+1)^2 = 9$$





## Writing Equations of Circles Given Graphs

Write the center, radius, and equation of the circle.

1. 
$$C = (1, -3)$$













# Writing Equations of Circles

1. Write the equation of a circle with the given radius and whose center is the origin.

a. 
$$r = 11$$
 $\chi^2 + y^2 = (21)$ 

$$\chi^{2} + y^{2} = 17$$



- 2. Write the equation of a circle with the given radius and center.
  - a. Center at (-2, 3) and radius of 4
- b. Center at (0, -5) and radius of  $3\sqrt{10}$

$$(x+2)^2+(y-3)^2=16$$



3. Write the equation given a point on the circle and its center.





b. Point at (5, 1) and Center at (2, -3)



- c. Point (0, 2) and Center at (-6, 3)
- d. Point (2, 5) and Center (0, 0)